Plants are being used as medicines since the beginning of human civilization; healing powers are reported to be present in plants and therefore, it is assumed that they have medicinal properties. The flora of Pakistan due to its diverse climate, soil conditions and many ecological regions is very rich in medicinal plants. According to a survey of Pakistan, about 6000 species of flowering plants have been existing, out of 6000 about 400-600 are medicinally important species (1). From near past, it has been discovered that properties of medicinal plants are due to its active chemical compounds (2). The discovery of drugs from medicinal plants started from the era when the isolation of drugs such as digitoxin, quinine, cocaine, and codeine has begun. The family Acanthaceae (Acanthus family) is a taxon of dicotyledonous flowering plants containing almost 250 genera and about 2500 species. Most of these are tropical herbs, shrubs, or twining vines; some are epiphytes. Only a few species are distributed in temperate regions. They are distributed in Indonesia and Malaysia, Africa, Brazil, Central America and Pakistan. Some of these are used as medicinal plants. Many species of the genus has antinociceptive, antioxidant, analgesic, antispasmodic, antiinflammatory properties. The phytochemicals constituents: glycosides, alkaloids, flavonoids and triterpenoids are present. The genus has been traditionally claimed to be used for the treatment of flu, asthma, fever, bronchitis, high blood pressure, eczema, and diabetes. The objective of this review article is to summarize all the pharmacological and phytochemical evaluations or investigations to find area of gap and endorse this genus a step towards commercial drug. Hence, further work required is to isolate and characterize the active compounds responsible for these activities in this plant and bring this genus plants to commercial health market to serve community with their potential benefits.

Keywords: phytochemical constituents, biological, Ruellia, Acanthaceae
Taxonomy
The family Acanthaceae, Class Eudicots and order Lamiales includes 250 genera and 2500 species (10). In Pakistan it is represented by 18 genera and 60 specific and infra specific taxa, of which 44 are native (11). The first palynological study was investigated few taxa (12). However, forthcoming studies (13) carried out detailed study and recognized for the first time 11 pollen types within the family Acanthaceae.

Folk medicinal uses of genus Ruellia
The whole parts of genus Ruellia are used in bladder stones and in bronchitis. Paste of leaves is also used for skin diseases and boils. Roots are used as anthelmintic. Syrup is used for whooping cough. Tuber powder is used for stomach ache.

Scientific studies of genus Ruellia
Antioxidant activity
The antioxidant activity of different extracts of stem of Ruellia tuberosa were investigated by various in vitro methods like 2,2-diphenyl-1-picrylhydrazyl (DPPH), free radical-scavenging assays and the hydrogen peroxide induced luminol chemiluminescence assay. The methanol extract and its four fractions of water, ethyl acetate, chloroform, and n-hexane were evaluated for antioxidant activity. The results revealed that Ruellia tuberosa possesses potent antioxidant activity (4).

It has been reported by other authors that the aerial parts of plant Ruellia prostrata showed antioxidant potential. Different concentrations of methanolic extract and n-butanol fraction were subjected to antioxidant assay by DPPH method, nitric oxide scavenging activity and reducing power assay. Both the n-butanol and methanolic extract showed the antioxidant potential but the antioxidant potential of n-butanol fraction is far higher than the methanolic extract (5).

Gastroprotective and analgesic activity
It was reported that aqueous extract of Ruellia tuberosa roots showed a strong and dose dependent gastroprotective activity in alcohol-induced gastric lesion of rats. The extract also had a mild erythropoietic and moderate analgesic activity. It was concluded from the data that Ruellia tuberosa root extracts have gastroprotective activity (6).

Anti-ulcer activity
Preliminary ethyl acetate extract of Ruellia tuberosa was studied for the acute oral toxicity, according to the economic cooperation and development guidelines, based on which two doses were selected, 250 mg/kg (low dose) and 500 mg/kg (high dose). Ranitidine was used as the standard drug (20 mg/kg). The ethyl acetate extract showed significant decrease in gastric volume, total acidity and free acidity. There was a significant (p < 0.01) increase in gastric pH only at high dose (500 mg/kg), when compared to control group. The value of ulcer index decreased in a dose dependent manner, when compared to control group (17).

In vitro purgative and cholinergic activity
Methanolic, ethyl acetate and aqueous extracts of Ruellia tuberosa produced contractions on electrically induced contracted ileum tissue strip at the dose of 30 µg/mL. Methanolic extract of Ruellia tuberosa was investigated on uterus and gestation by using 350 mg/kg/day and was found to increase the number of implantation (8). This study demonstrated that estrogenic effect may be due to flavonoid and sterol while cholinergic effect may be due to iridoid glycosides.

Antimicrobial activity
The antibacterial activities of n-hexane, dichloromethane, ethyl acetate and methanol extracts of Ruellia tuberosa were explored against Gram positive and Gram negative bacteria. The ethyl acetate and methanol fractions exhibited the highest rates of antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa (18).

Anticancer activity
The methanol extract of aerial part of herb Ruellia tuberosa possessed cytotoxicity. The minimum inhibitory concentration (IC\textsubscript{50}) for methanol extract was found to be 3.5 and 1.9 µg/mL in H460 and MDA-MB231 cancer cells, respectively. Tylocrebrine was isolated from Ruellia tuberosa through bioassay directed column chromatography and elucidated its anticancer and anti-inflammatory potential (19).

Antinociceptive and anti-inflammatory activity
The ethanol extract of Ruellia tuberosa was
evaluated for its antinociceptive and anti-inflammatory properties in experimental mice and rat models. In the hot plate test, the group that received a dose of 300 mg/kg for mice showed maximum time needed for the response against thermal stimuli and maximum possible analgesic was similar to that of diclofenac sodium. The extract at 500 and 250 mg/kg doses showed significant reduction in acetic acid-induced writhing in mice, which was similar to diclofenac sodium. The extract also demonstrated significant inhibition in serotonin and egg albumin-induced hind paw edema in rats at the doses of 100, 200 and 300 mg/kg. The anti-inflammatory properties exhibited by the extract were comparable to that of indomethacin at a dose of 5 mg/kg (20).

Cardiovascular and hypertensive activity
In pharmacological investigation, extracts of Ruellia brittoniana and Ruellia patula were used for cardiovascular screening. The cardiovascular experiments were carried out in vitro and in vivo. In in vitro studies rabbit heart was used while for in vivo, anesthetized rats were used. In in vivo experiment, extracts of Ruellia brittoniana and Ruellia patula showed a hypertensive activity in pentothal sodium anesthetized rats (21).

Antispermatogenic activity
Aqueous extract of tuberous roots of Ruellia tuberosa administered orally at the dose of 50, 100 and 150 mg/kg body weight for 21 days resulted in significantly decreased sperm count in male albino rats. The results suggested that the aqueous extract of R. tuberosa produces antispermatogenic effect in male albino rats (22).

Antidiabetic, antihyperlipidemic and hepatoprotective activity
The methanol extract of Ruellia tuberosa leaves at a dose of 100 and 200 mg/kg of body weight was administered at single dose per day to diabetes-induced rats for a period of 14 days. The methanol extract of Ruellia tuberosa leaves elicited significant reductions of blood glucose (p < 0.05), lipid parameters except HDL-C, serum enzymes and significantly increased HDL-C at the dose of 200 mg/kg when compared with the standard drug glibenclamide (5 g/kg). From the above result, it may be concluded that methanol extract of Ruellia tuberosa leaves possesses significant antidiabetic, antihyperlipidemic and hepatoprotective effects in alloxan-induced diabetic rats (8).

Phytochemical constituents of Ruellia genus

Preliminary phytochemical screening
Preliminary phytochemical screening of ethyl acetate extract of Ruellia tuberosa reveals the presence of saponins, tannins, and flavonoids, which may be responsible for its activity (18).

Glycosides
Extract of the whole plant of Ruellia brittoniana has afforded the new glycoside 2-O-α-galactopyranosyl glycerol hexaacetate.

2-O-α-galactopyranosyl glycerol hexaacetate

Two ligan glycosides identified as 5,5′-dimethoxylariciresinol-9-α-D-glucopyranoside (reupaside) and lyoniresinol-9′-α-D-glucopyranoside with ethyl-α-D-galactopyranoside, α- and β-D-glucose and β-D-fructose have been isolated from Ruellia patula (23, 24).

Ethyl-α-D-galactopyranose

Lyoniresinol-3-β-glucopyranose

A cyanogenic glucoside was isolated from Ruellia rosea and showed the presence of a p-hydroxyphenyl moiety indicating that the compound was either taxiphyllin or the diastereomer dhurrin (25, 26).
The leaves contained only traces of apigenin and luteolin, while in flowers was malvidin-3,5-digluco-
side in appreciable quantity. The flowers buds con-
tained the maximum proportion of flavonoids (3%
apigenin-7-O-glucoronide and the other flavones
were identified as apigenin-7-O-glucoside, apigenin-
7-O-rutinoside and luteolin-7-O-glucoside (26, 27).

From *Ruellia patula*, nine compounds were
isolated. A new lignan glycoside 5,5-dimethoxylari-
ciresinol-9-O-β-D-glucopyranoside, apigenin-7-O-
rutinoside, β-sitosterol, lupeol, α-D-glucose, β-D-
glucose, and β-D-fructose (21).

Alkaloids

Tetramethylputrescine was isolated from the
roots and aerial parts of *Ruellia rosea* (28).

Tylocrebrine, a phenanthrene alkaloid, was
reported from aerial parts of *Ruellia tuberosa* and found
its anti-cancer and anti-inflammatory potential (13).

Flavonoids

Five flavonoids: cirsimaritin, cirsimarín, cirsil-
iol-4'-glucoside, sorbifolin and pedalitin along with
betulín, vanillic acid and indole-3-carboxaldehyde
were isolated from the ethyl acetate extracts of
Ruellia tuberosa (14).
Three new flavonoid glycosides: demethoxycentaureidin 7-O-β-D-glucopyranosyl-(1”’β”,2”)β-D-glucopyranoside, were isolated from leaves of *Ruellia patula* JACQ., together with 12 known compounds, β-sitosterol glucoside, vanilloside, bioside (decaffeoylverbascoside), acteoside (verbascoside), syringin, benzyl alcohol O-β-D-xylopyranosyl-(1”’β”,2”)β-D-glucopyranoside, cistanoside E, roseoside, phenethyl alcohol O-β-D-xylopyranosyl-(1”’β”,2”)β-D-glucopyranoside, (+)-lyoniresinol 3-α-O-β-D-glucopyranoside, isoaacteoside and 3,4,5-trimethoxyphenol O-α-L-rhamnopyranosyl-(1”’β”,6”)β-D-glucopyranoside. Their structures were elucidated by means of spectroscopic analyses.

Other compounds

A triterpenoid, 21-methyldammer-22-en-3,18,27-triol was isolated from the aerial parts of *Ruellia tuberosa* (30).

From *Ruellia brittoniana*, five compounds of different classes were isolated. Two new compounds: 2-O-α-D-galactopyranosyl glycerol hexaacetate and dimer of methyl-2,4-diene-hexandioate were obtained. In addition to these new compounds, three reported compounds, hyoniresinol-9-O-β-D-glucopyranoside, α-ethyl-galactose and para-methoxybenzoic acid were isolated for the first time from this plant (31).
CONCLUSION

The review place emphasis on genus *Ruellia* and elaborates the biological and phytochemical studies and medicinal uses in various ailments. This genus is well studied in its biological and phytochemical aspects. The future work required is to isolate the active biological compounds which are responsible for these activities and may serve as drugs for different ailments. Now it is time to bring genus *Ruellia* from herbal market to health commercial market.
REFERENCES

Received: 23. 04. 2014